1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
import sys, os, glob import numpy as np import dlib import cv2
predictor_path = r'./model/shape_predictor_68_face_landmarks.dat' face_rec_model_path = r'./model/dlib_face_recognition_resnet_model_v1.dat' faces_folder_path = r'./faces/'
detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path)
LEFT_EYE_POINTS = list(range(42, 48)) RIGHT_EYE_POINTS = list(range(36, 42)) LEFT_BROW_POINTS = list(range(22, 27)) RIGHT_BROW_POINTS = list(range(17, 22)) NOSE_POINTS = list(range(27, 35)) MOUTH_POINTS = list(range(48, 61))
OVERLAY_POINTS = [ LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS + RIGHT_BROW_POINTS + NOSE_POINTS + MOUTH_POINTS, ]
FEATHER_AMOUNT = 11
def get_landmark(image): face_rect = detector(image, 1) if len(face_rect) != 1: print('No one face in one picture') else: return np.matrix([[p.x, p.y] for p in predictor(image, face_rect[0]).parts()])
def find_one_face(image): face_rect = detector(image, 1) return len(face_rect) == 1
def transformation_from_points(p1, p2): p1 = p1.astype(np.float64) p2 = p2.astype(np.float64)
c1 = np.mean(p1, axis=0) c2 = np.mean(p2, axis=0) p1 -= c1 p2 -= c2
s1 = np.std(p1) s2 = np.std(p2)
p1 /= s1 p2 /= s2 U, S, Vt = np.linalg.svd(p1.T * p2) R = (U * Vt).T
trans_mat = np.vstack([np.hstack(((s2 / s1)*R, c2.T-(s2/s1)*R*c1.T)), np.matrix([0., 0., 1.])]) return trans_mat
def warp_image(image, M, dshape): output_image = np.zeros(dshape, dtype=image.dtype) cv2.warpAffine(image, M[:2], (dshape[1], dshape[0]), dst=output_image, flags=cv2.WARP_INVERSE_MAP, borderMode=cv2.BORDER_TRANSPARENT) return output_image
def draw_convex_hull(img, points, color): points = cv2.convexHull(points) cv2.fillConvexPoly(img, points, color)
def get_face_mask(img, landmarks): img = np.zeros(img.shape[:2], dtype=np.float64) for group in OVERLAY_POINTS: draw_convex_hull(img, landmarks[group], color=1) img = np.array([img, img, img]).transpose((1, 2, 0)) return img
COLOUR_CORRECT_BLUR_FRAC = 0.6 def color_correct(im1, im2, landmarks1): blur_amount = COLOUR_CORRECT_BLUR_FRAC * np.linalg.norm( np.mean(landmarks1[LEFT_EYE_POINTS], axis=0) - np.mean(landmarks1[RIGHT_EYE_POINTS], axis=0)) blur_amount = int(blur_amount) if blur_amount % 2 == 0: blur_amount += 1 im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0) im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0) im2_blur[im2_blur < 1] = 1 im2 = im2.astype(np.float64) im1_blur = im1_blur.astype(np.float64) im2_blur = im2_blur.astype(np.float64) im2_color_correct = im2 * im1_blur / im2_blur im2_color_correct[im2_color_correct < 0] = 0 im2_color_correct[im2_color_correct > 255] = 255 return im2_color_correct.astype(np.uint8)
def change_face(img1, img2): boy = img1 girl = img2 boy_landmarks = get_landmark(boy) girl_landmarks = get_landmark(girl)
trans_mat = transformation_from_points( boy_landmarks[OVERLAY_POINTS], girl_landmarks[OVERLAY_POINTS] )
boy_mask = get_face_mask(boy, boy_landmarks) girl_mask = get_face_mask(girl, girl_landmarks) warped_girl_mask = warp_image(girl_mask, trans_mat, boy.shape) combined_mask = np.max([boy_mask, warped_girl_mask], axis=0) combined_mask = cv2.GaussianBlur(combined_mask, (19, 19), 0) combined_mask = cv2.GaussianBlur(combined_mask, (13, 13), 0) combined_mask = cv2.GaussianBlur(combined_mask, (7, 7), 0)
warped_girl = warp_image(girl, trans_mat, boy.shape) warped_girl_color_correct = color_correct(boy, warped_girl, boy_landmarks) boy = boy.astype(np.float64) warped_girl = warped_girl.astype(np.float64)
renyao = boy * (1 - combined_mask) + warped_girl_color_correct * combined_mask boy = boy.astype(np.uint8) warped_girl = warped_girl.astype(np.uint8) renyao = renyao.astype(np.uint8)
return renyao ''' cv2.imshow('boy', boy) cv2.imshow('warped_girl', warped_girl) cv2.imshow('renyao', renyao) cv2.waitKey(0) '''
def change_face_video(target_face_file, camera=0): cap = cv2.VideoCapture(camera) target_face = cv2.imread(target_face_file) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
while (cap.isOpened()): hasFrame, frame = cap.read() new_face = frame if hasFrame and find_one_face(frame): new_face = change_face(frame, target_face) cv2.imshow('new_face', new_face) out.write(frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.waitKey(0) cap.release() cv2.destroyAllWindows()
change_face_video('faces/girl.jpeg')
|